14 research outputs found

    Canino 117 AD

    Get PDF
    1 .pdf (1 Pag.) con texto descriptivo y 1 Fig. This EEAD-CSIC database – Variedades frutales de hueso y pepita is made available under the Open Database License: http://opendatacommons.org/licenses/odbl/1.0/. Any rights in individual contents of the database are licensed under the Database Contents License: http://opendatacommons.org/licenses/dbcl/1.0/.[ES] Caracterización pomológica, período de maduración e ilustración del fruto de esta variedad de albaricoquero descrita en la Cartografía de frutales de hueso y pepita (Herrero J et al., 1964).[EN] Pomological characterization, maturation time and fruit figure of apricot cultivar described in “Cartografía de frutales de hueso y pepita” (Herrero J et al., 1964)

    Video_2_Dominance hierarchy regulates social behavior during spatial movement.AVI

    No full text
    Rodents establish dominance hierarchy as a social ranking system in which one subject acts as dominant over all the other subordinate individuals. Dominance hierarchy regulates food access and mating opportunities, but little is known about its significance in other social behaviors, for instance during collective navigation for foraging or migration. Here, we implemented a simplified goal-directed spatial task in mice, in which animals navigated individually or collectively with their littermates foraging for food. We compared between conditions and found that the social condition exerts significant influence on individual displacement patterns, even when efficient navigation rules leading to reward had been previously learned. Thus, movement patterns and consequent task performance were strongly dependent on contingent social interactions arising during collective displacement, yet their influence on individual behavior was determined by dominance hierarchy. Dominant animals did not behave as leaders during collective displacement; conversely, they were most sensitive to the social environment adjusting their performance accordingly. Social ranking in turn was associated with specific spontaneous neural activity patterns in the prefrontal cortex and hippocampus, with dominant mice showing higher firing rates, larger ripple oscillations, and stronger neuronal entrainment by ripples than subordinate animals. Moreover, dominant animals selectively increased their cortical spiking activity during collective movement, while subordinate mice did not modify their firing rates, consistent with dominant animals being more sensitive to the social context. These results suggest that dominance hierarchy influences behavioral performance during contingent social interactions, likely supported by the coordinated activity in the hippocampal-prefrontal circuit.</p

    Video_3_Dominance hierarchy regulates social behavior during spatial movement.AVI

    No full text
    Rodents establish dominance hierarchy as a social ranking system in which one subject acts as dominant over all the other subordinate individuals. Dominance hierarchy regulates food access and mating opportunities, but little is known about its significance in other social behaviors, for instance during collective navigation for foraging or migration. Here, we implemented a simplified goal-directed spatial task in mice, in which animals navigated individually or collectively with their littermates foraging for food. We compared between conditions and found that the social condition exerts significant influence on individual displacement patterns, even when efficient navigation rules leading to reward had been previously learned. Thus, movement patterns and consequent task performance were strongly dependent on contingent social interactions arising during collective displacement, yet their influence on individual behavior was determined by dominance hierarchy. Dominant animals did not behave as leaders during collective displacement; conversely, they were most sensitive to the social environment adjusting their performance accordingly. Social ranking in turn was associated with specific spontaneous neural activity patterns in the prefrontal cortex and hippocampus, with dominant mice showing higher firing rates, larger ripple oscillations, and stronger neuronal entrainment by ripples than subordinate animals. Moreover, dominant animals selectively increased their cortical spiking activity during collective movement, while subordinate mice did not modify their firing rates, consistent with dominant animals being more sensitive to the social context. These results suggest that dominance hierarchy influences behavioral performance during contingent social interactions, likely supported by the coordinated activity in the hippocampal-prefrontal circuit.</p

    Video_1_Dominance hierarchy regulates social behavior during spatial movement.AVI

    No full text
    Rodents establish dominance hierarchy as a social ranking system in which one subject acts as dominant over all the other subordinate individuals. Dominance hierarchy regulates food access and mating opportunities, but little is known about its significance in other social behaviors, for instance during collective navigation for foraging or migration. Here, we implemented a simplified goal-directed spatial task in mice, in which animals navigated individually or collectively with their littermates foraging for food. We compared between conditions and found that the social condition exerts significant influence on individual displacement patterns, even when efficient navigation rules leading to reward had been previously learned. Thus, movement patterns and consequent task performance were strongly dependent on contingent social interactions arising during collective displacement, yet their influence on individual behavior was determined by dominance hierarchy. Dominant animals did not behave as leaders during collective displacement; conversely, they were most sensitive to the social environment adjusting their performance accordingly. Social ranking in turn was associated with specific spontaneous neural activity patterns in the prefrontal cortex and hippocampus, with dominant mice showing higher firing rates, larger ripple oscillations, and stronger neuronal entrainment by ripples than subordinate animals. Moreover, dominant animals selectively increased their cortical spiking activity during collective movement, while subordinate mice did not modify their firing rates, consistent with dominant animals being more sensitive to the social context. These results suggest that dominance hierarchy influences behavioral performance during contingent social interactions, likely supported by the coordinated activity in the hippocampal-prefrontal circuit.</p

    Multiphoton microscopy reveals cancer stem cell driven tumor propagation.

    No full text
    <p>Fractionated CSCs and non-stem tumor cells were labeled with different fluorescent proteins and transplanted into mice at a 10% cancer stem cell (YFP) to 90% non-stem tumor cell (CFP) ratio as shown in experimental design schematic (<b>A</b>). CSCs outgrew non-CSCs in vivo as shown in summary graph (<b>B</b>), which was calculated based on three-dimensional reconstructions of projection micrographs (<b>B, C</b>). Additionally, tumor populations did not intermingle in vivo (non-stem tumor population indicated by yellow oval). Fluorescent dextran (shown in purple) was injected into the circulation to illuminate blood vessels prior to imaging. Scale bar represents 100 µm.</p

    Histological evaluation reveals tumors contained cancer stem cells and their descendants that had association with blood vessels.

    No full text
    <p>Tumors from the cell mixing experiments (n = 3) were evaluated to determine their composition. Subsequent evaluation of resulting tumors demonstrates that the majority of the cells within the tumor mass was of human origin and derived from CSC as confirmed by Tra-1-85 staining and YFP expression, shown in representative micrographs (<b>A</b>) and bar graph (<b>B</b>). Peripheral transplanted tumor cells (YFP positive CSCs and their descendants) were observed to have an association with blood vessels. Micrograph from multiphoton imaging and three-dimensional reconstruction (<b>C</b>) depict close association of tumor cells (green) with adjacent blood vessel (purple, illuminated by fluorescent dextran injection into the circulation prior to imaging). Histological examination of resulting tumors confirms close association of peripheral tumor cells to the vasculature using CD31 immunostaining (<b>D</b>; CD31 in red, tumor cells in green, nuclei in purple). Scale bar represents 50 µm. Data displayed as mean values +/- S.E.M. ***, p<0.001 as assessed by one-way analysis of variance (ANOVA).</p

    Tumors contain fractions of stem-like and proliferating cells that originated from cancer stem cells.

    No full text
    <p>Histological examination was performed from resulting tumors in the cell mixing experiments (n = 3) to determine the fraction of stem-like cells as assessed by Sox2 expression and the presence of proliferating cells as confirmed by the M-phase marker phosphorylated histone 3 (PH3). Representative micrographs (<b>A</b>) and bar graph (<b>B</b>) demonstrate Sox2 expression (red) is associated with cancer stem cells and their descendants (green) but not with non-stem tumor cells and their descendants (blue). Representative micrographs (<b>C</b>) and bar graph (<b>D</b>) demonstrate PH3 expression (red) is associated with cancer stem cells and their descendants (green) but not with non-stem tumor cells and their descendants (blue). Scale bar represents 50 µm. Data displayed as mean values +/− S.E.M. ***, p<0.001 as assessed by one-way analysis of variance (ANOVA), nuclei counterstained with Draq5 (purple).</p

    CSCs and non-stem tumor cells prior to transplantation contain different fractions of stem-like and proliferating cells.

    No full text
    <p>Representative micrographs (<b>A</b>) and bar graph (<b>B</b>) of expanded cells prior to transplantation demonstrate Sox2 and PH3 expression (red) is higher in the CSC fraction of cells as compared with the non-stem tumor cells. Summary figure depicts marker expression from in vivo and in vitro analyses (<b>C</b>). Scale bar represents 50 µm. Data displayed as mean values +/− S.E.M. ***, p<0.001 and N.S. represents not significant (p>0.05) as assessed by one-way analysis of variance (ANOVA), nuclei counterstained with Hoechst 33342 (blue).</p

    Gaining Qualitative Insight into the Subjective Experiences of Adherers to an Exercise Referral Scheme: A Thematic Analysis

    No full text
    Nine adults who had recently completed an exercise referral scheme participated in a semi-structured interview to uncover the key psychological factors associated with adherence to the scheme. Through thematic analysis an exercise identity emerged to be a major factor associated with adherence to the scheme, which was formed of a number of underpinning constructs including: changes in self-esteem, changes in self-efficacy, and changes in self-regulatory strategies. Also, an additional theme of transitions in motivation to exercise was identified, showing participants’ motivation to alter from extrinsic to intrinsic reasons to exercise during the scheme

    Finding <i>Mos1</i> alleles with MosLocator.

    No full text
    <p>(A) MosLocator (<a href="http://www.ciml.univ-mrs.fr/applications/MosLocator" target="_blank">www.ciml.univ-mrs.fr/applications/MosLocator</a>) finds <i>Mos1</i> alleles using gene sequence or transcript names. For large lists of genetic gene names, the gene sequence or transcript names can be obtained using WormMart, or here, using WormBase Converter (<a href="http://www.ciml.univ-mrs.fr/applications/WB_converter" target="_blank">www.ciml.univ-mrs.fr/applications/WB_converter</a>) <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0030482#pone.0030482-Engelmann1" target="_blank">[15]</a>. In the example shown, the 23 <i>ptr</i> genes were used as input. (B) Screen grabs were captured to illustrate the use of MosLocator. Left panel: a list of sequence names was entered, and the search parameters were defined. Upper right panel: a display of the output for this search. Clicking on a non-zero number displayed in either of the last two columns, for example the “2” associated with the gene T21H3.2 (<i>ptr-16</i>), generates the display shown in the inset. This is a list of the 2 <i>Mos1</i> mutant alleles that are found within the gene T21H3.2. Each allele name is hyperlinked to Wormbase. (C) A partial view of the Variation report for the <i>Mos1</i> allele <i>ttTi21065</i> found on chromosome V at Wormbase (version WS225). (D) The genomic environment of the <i>ttTi21065</i> allele is displayed. The figure is a screen-grab from Wormbase.</p
    corecore